If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=70t^2+140t-50
We move all terms to the left:
0-(70t^2+140t-50)=0
We add all the numbers together, and all the variables
-(70t^2+140t-50)=0
We get rid of parentheses
-70t^2-140t+50=0
a = -70; b = -140; c = +50;
Δ = b2-4ac
Δ = -1402-4·(-70)·50
Δ = 33600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{33600}=\sqrt{1600*21}=\sqrt{1600}*\sqrt{21}=40\sqrt{21}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-140)-40\sqrt{21}}{2*-70}=\frac{140-40\sqrt{21}}{-140} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-140)+40\sqrt{21}}{2*-70}=\frac{140+40\sqrt{21}}{-140} $
| -29=7+4(-2x+5) | | -4x=x+24 | | (7x-1)+(8x-10)=180 | | 6t^2t=0 | | 5x+4=11x-12 | | 8x+16=16x+8 | | 48=-8(6x-6) | | 86+11x-6+25x-4=180 | | z=5.26 | | -2x+10=-3x+3 | | 4x-20+3x-4=180 | | 5x+39=4 | | 86+25x-4=180 | | 5x-2+2x+3=90 | | 14+t=83 | | 1+6n=5(7n+6) | | 22=1-4x-3x | | X=6(k+C) | | x–18=–7. | | 86+11x-6=180 | | -2x+1-3x=1 | | p5=-60 | | 80=-10(9a+10) | | 4+w=-10 | | 11x-6+25x-4=180 | | 2.1=4.9x^2 | | 9x-9=3x+45 | | -7(x+8)=-31-2x | | -13/20=1/4+3/5x | | 45+45+135+135+3x+x=180 | | 6-n5=-4 | | 8x^2-9x+11=0 |